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Two-dimensional hydrodynamical description of a rotating

nematic sample in a magnetic ® eld

ANTONINO POLIMENO* and ASSIS F. MARTINS

Departamento de CieÃ ncia do Materiais, Faculdade de CieÃ ncias e Tecnologia,
Universidade Nova de Lisboa, P-2825 Monte de Caparica, Portugal

(Received 7 November 1997; in ® nal form 16 February 1998; accepted 30 March 1998 )

Nematodynamic equations are applied to the description of a cylindrical nematic sample,
rotating around its axis with constant angular velocity, in the presence of a perpendicular
magnetic ® eld. The system is described by the director orientation n and by the velocity
vector v ® elds in the cylinder volume. Equations are simpli® ed by considering the director
orientation n constrained in a planar section of the cylinder and by neglecting coupling
with the velocity ® eld, which is completely determined by the angular speed rate. Boundary
conditions for perfect alignment of the director n perpendicularly to the walls are assumed.
It is shown that a dynamical equation can be obtained which is amenable to numerical
analysis for the spatial and time dependence of the director orientation. Transient distributions
and stationary solutions are found and discussed.

1. Introduction [5]. Emsley et al. also measured the deuterium NMR
According to the hydrodynamical description of nematic spectrum for the nematic phase of a partly deuteriated

liquid crystals [1, 2], an incompressible nematic sample liquid crystal as a function of sample spinning speed
is described by two vector ® elds in space: the director [6], and Kneppe and Schneider measured the rotational
unit vector n (r, t ), which gives the orientation of the viscosity coe� cient of the liquid crystal [7]. Experiments
director at space point r and time t, and the velocity related to ® xed geometries of the initial orientation of
vector v (r, t ). Constitutive equations [1, 2] provide a the director in the bulk with respect to the magnetic ® eld
closed set of partial di� erential relations which are in have also been conducted, more recently, by Martins
principle able to describe the ¯ uid both in space and and coworkers [8].
time, if explicit boundary and initial conditions are given In this communication, we describe the full dependence
and either analytical or (more likely) numerical solution upon space and time of the director orientation, taking
techniques are available. In most cases one has to resort into account boundary conditions at the internal walls
to drastic approximations. of the tube and assuming a defect-controlled experi-

We shall consider in the following a well known mental set-up. Under the two basic approximations of
case, namely a rotating sample in the presence of a neglecting the dynamical coupling between the velocity
constant perpendicular magnetic ® eld. A tube containing and director vector ® elds, and of constraining the director
a nematic liquid crystal is spinning at a constant angular motion in the horizontal plane containing the magnetic
velocity about its symmetry axis, while a uniform mag- ® eld, we recover a closed, albeit non-linear, partial
netic ® eld is turned on in a horizontal plane. Equivalent di� erential equation for the director orientation and
or related rheological measurements with analogous we present our preliminary ® ndings. A time-dependent
geometrical set-ups have been made in the past, initially solution is calculated which takes into account the spatial
by Tsevtkov [3], who actually used a stationary sample gradients, and it is shown that its dynamical evolution
in a rotating magnetic ® eld. Gasparoux and Prost goes ® rst through a long-lived transient behaviour, with
measured the torque exerted by the ¯ uid on the cylinder rather complex spatial patterns, and then always reaches
as a function of the rotational speed [4], and Leslie a stationary distribution. The spatial patterns depend
et al. performed studies on the electron spin resonance on the value of the spinning rate, and their complexity
spectrum of a paramagnetic probe dissolved in the nematic appears to be higher for values close to Leslie’s critical

velocity.
In § 2 the model is discussed and the full time evolution*Author for correspondence. Permanent address: Department

equation for the director orientation is introduced.of Physical Chemistry, University of Padova, Via Loredan 2,
35131 Padova, Italy. Neglecting any spatial dependence, simple and well-known
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546 A. Polimeno and A. F. Martins

solutions are obtained whose validity is limited by the by writing:
fact that boundary conditions must necessarily be dis-

v = X Ö r= (Õ Vr2 , Vr1 , 0 ) (1 )carded and that a forced uniformity of the director
n = (cos w, sin w, 0 ) . (2 )orientation is imposed upon the whole sample. These

are revised in § 3. New insight is gained when the spatial
Notice that equation (1) satis® es the incompressibilitydependence is fully taken into account, although the
condition, = Ã ¯ v=0, where = Ã is the gradient with respect

solutions are much more di� cult to obtain and one has
to r. Both choices (1 ) and (2 ) may be considered as

to resort to numerical algorithms, as discussed in § 4.
reasonable assumptions. The imposed planarity should

Preliminary results are presented in § 5, and concluding
be lifted if boundary conditions requiring adjustments

remarks are given in § 6.
along the third coordinates are imposed. The real velocity
pro® le is distorted in the intermediate regions of the

2. The model
sample, especially at high rotation speeds [7].

The geometrical set-up is sketched in ® gure 1, which
From the constitutive equation of nematodynamics

shows a representative planar section of the sample. The
we have:

plane is de® ned by the axes e1 and e2 ; a point in space
is identi® ed by the vector r, which is de® ned by the

j
d2

n i

dt
2 =G i+ g i+ pki,k (3 )Cartesian coordinates (r1 , r2 , r3 ) : in the plane r3=0. The

radius of the cylinder is R . The magnetic ® eld is de® ned
as H=(H, 0, 0). Finally the constant angular velocity vector g i=ln i Õ

qW

qn i
+ g ¾i (4 )

for the cylinder is X = (0, 0, V). For each position r, the
vector ® elds v and n are de® ned as having components where j is the inertial constant, G i is the i-component
in the plane only, i.e. v= (v1 , v2 , 0 ), n = (n1 , n2 , 0 ),

of the external directory body force due to the magnetic
choice (1 ).

® eld, and g i is that of the internal director body force,
Next we neglect any complexity in the velocity pro® le, which contains a dissipative contribution g ¾i (i =1, 2); W

i.e. we assume that the vector ® eld is obtained as the is the Helmholtz free energy and pji=qW /qn i,j ; l is an
linear velocity of a rigid cylinder of angular velocity X , arbitrary function. The material time derivative is d/dt.
choice (2 ). This approximation allows us to uncouple The external director body force is given simply by
the director n from the velocity v in the nematodynamic
equations. Since n

2=1, we may summarize these choices G i=xa H jn jH i (5 )

Figure 1. Geometrical set-up.
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5472-D hydrodynamica l description of nematics

where xa=x
d
Õ x), x

d
and x) being the principal dia- the time evolution of the director is governed by the

following equation:magnetic susceptibilities per unit volume. Einstein’s sum-
mation convention is employed, if not stated otherwise
explicitly. By simple algebraic manipulations, taking into

qw

qt
+ V A qw

qh
Õ 1B + Vc sin 2w

account that n
2=1, one gets the following equation for

the unknown angle w:
Õ VK A q2

w

qx
2 +

1

x

qw

qx
+

1

x
2

q2
w

qh
2 B =0. (14)

j A n2
d2

n1

dt
2 Õ n1

d2
n2

dt
2 B +

1

2
xa H

2 sin 2w
Parameters Vc and VK have dimensions of frequencies
and are de® ned as:+ n2g ¾1 Õ n1g ¾2+ K =0 (6 )

where K is obtained as:
Vc=

xa H
2

2c1
(15)

K =n2 A Õ
qW

qn1
+pk1,kB + n1 A Õ

qW

qn2
+ pk2,kB . (7 )

VK =
K

c1 d
2 . (16)

The intrinsic director body force components g ¾i are
The fundamental time scales which enter the descriptionobtained in terms of the components of the director
of the system are then related to the speed of rotation® eld, and of the angular speed V :
(V), to the ratio between the ® eld intensity H and the
viscosity parameter c1 (Vc ), and to the ratio betweeng ¾1= Õ c1 A dn1

dt
+Vn2B (8 )

the averaged elastic constant K and c1 (VK ). Depending
on their relative values, di� erent stationary and dynamical
regimes can be analysed. The case V =0 correspondsg ¾2= Õ c1 A dn2

dt
Õ Vn1B (9 )

to a ® xed geometry, i.e. no rotation: in this case, the
stationary solution, qw/qt =0 does not depend uponHere c1 is a rotational viscosity parameter. We may now
the viscosity c1 , but only on the ® eld intensity and thesubstitute these expressions in equation (6). We neglect
elastic constant.the inertial contribution, by assuming j small (3 ); also

we may write explicitly the material time derivative as
3. Space-independent approximation

Let us now review the traditional treatment ofd

dt
=

q
qt

+ ( X Ö r) ¯ = Ã . (10)
equation (14), when spatial dependence is totally neglected.
All derivatives with respect to x and h are discarded andThe following equation is then obtained:
the following simpli® ed ordinary di� erential equation
for w ( t ) is found:

c1C qw

qt
Õ V A 1 + r2

qw

qr1
Õ r1

qw

qr2B D dw

dt
Õ V + Vc sin 2w=0 (17)

+
1

2
xa H

2 sin 2w + K =0. (11)
where in this section d/dt is the ordinary derivative with
respect to time. A stationary solution, dw/dt=0, isThe function K can be evaluated from equation (7);
possible only for V/Vc < 1, in which casefor the sake of simplicity we shall adopt the spherical

approximation (4 ) for the elastic energy W [9]
w =

1

2
arcsin

V

Vc
(18)

W =
1

2
Kn i,j n i,j (12)

otherwise the angle w basically rotates in time, with an
e� ective frequency given by (V2 Õ V

2
c )1/2 [10]. Twowhere K is an averaged elastic constant. In this case K

considerations are in order. First, the assumption ofis simply given by (see Appendix):
spatial independence is a very drastic approximation,

K =K (n2 = Ã 2
n1 Õ n1 = Ã 2

n2 ) . (13) especially in so far as boundary conditions are con-
cerned. Second, the prediction of a rotating directorIn order to simplify as much as possible our ® nal

equation, it is convenient to change our representation even in the bulk of the ¯ uid, especially at high rotating
speeds of the sample, could be strongly modi® ed whenfrom Cartesian to cylindrical, or polar as far as the plane

is concerned, i.e. from r1 , r2 to r, h (c f. ® gure 1), and to spatial dependence comes into consideration. In fact
additional stationary solutions can manifest themselvesintroduce a rescaled radius x = r/d, where x is now an

adimensional quantity and d is a constant length. Finally, once the condition of independence of w upon x and
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548 A. Polimeno and A. F. Martins

especially h is released. This will be the subject of the 4. Space-dependent treatment

We shall ® rst de® ne boundary and initial conditionsanalysis continued in § 4.
It is interesting to note that even under the condition for the system under study. Up to now surface e� ects

have not been considered fully, since the approximateof negligible spatial gradient of the director, additional
stationary solutions can be predicted if one assumes elastic free energy we have chosen is de® ned minus

surface terms, which have been neglected. For simplicitymodi® ed constitutive equations, as was done by Martins
[11] in his continuum theory of liquid crystal polymers, we shall consider only the case of equal boundary con-

ditions on the whole internal surface of the cylinder, i.e.where he allowed for some non-a� nity of the response
of polymer strands to an imposed rate of deformation. having the same dependence upon h. Let us assume then

normal or radial boundary conditions at the surface:The only changes are in equations (8) and (9), which
become

w(X, h, t) =h (23)

g ¾1 + t A dg ¾1
dt

+ Vg ¾2B = Õ c1 A dn1

dt
+Vn2B (19) for all times. In the following we shall also consider w

as a periodic function of h of period 2p. The spatial
variables h and x are thus de® ned as ranging within the

g ¾2 + t A dg ¾2
dt

Õ Vg ¾1B = Õ c1 A dn2

dt
Õ Vn1B (20) limits 0 < h < 2p, 0 < x < X =R /d. Next we shall assume

that at x =0 the generic solution w (0, h, t ) is a ® nite
where t is a time constant. Neglecting time derivatives well-behaved function.
and combining these expression with equation (6) we Naturally, di� erent boundary conditions could be
obtain the following condition for stationary solutions: assumed: for instance, the director could be assumed to

be tangential to the wall of the cylinder, instead of being
perpendicular to it, or one could assume the existencesin 2w=

V

Vc ( 1 + t
2
V

2
)

. (21)
of a defect (divergent w) at x =0. Initial conditions
should also be speci® ed. For the sake of simplicity, weFor t=0 we re-obtain the simple description based on
shall assume that at t =0 the system is prepared in theLeslie’s equations. For t>0 two cases are possible: if
simplest stationary state compatible with the absence oft

2
V

2
c >1/4 , a stationary solution is always found, since

rotational speed and magnetic ® eld (V =Vc=0), i.e. athe right hand member of equation (21) is always less
perfect radial alignment of the director:than 1. Otherwise two critical velocities V1,2 are predicted:

w (x, h, 0 ) =h. (24)
V1,2=

1

t
2
Vc C 1

2
Ô A 1

4
Õ t

2
V

2
c B

1/2D (22)
Solutions of the full time and space dependent

equation cannot be recovered analytically. However, asuch that stationary solutions are possible for V < V1
numerical solution can be found, by considering anand for V > V2 . Thus for ® nite values of t, a richer
expansion in a suitable set of functions. Let us ® rstcollection of situations (no critical velocity at all, or two
de® ne a related functioncritical velocities) can in principle be obtained even

without considering the director spatial dependence. Q =w Õ h. (25)
However, a more careful analysis of the problem gives

The time evolution equation in Q is now:a di� erent perspective. First, in most plausible experi-
mental conditions Vc ranges from 10 Õ

2 to 10 Õ 4 s Õ
1.

Estimates of t range from 10 Õ
3 to 100 s at most. Thus qQ

qt
+ V

qQ

qh
+ Vc sin 2 (h + Q)

the condition of no critical velocities is practically
rarely attained, except maybe for short molecules, for

Õ VK A q2
Q

qx
2 +

1

x

qQ

qx
+

1

x
2

q2
Q

qh
2 B =0. (26)which c1 is signi® cantly small. Two critical velocities

are usually predicted for liquid crystal polymers, with
V1# Vc and V2#1/t

2
Vc&Vc . Second, although modi- Initial and boundary conditions are now simply stated

® ed equation (21) predicts a necessary condition for the as:
existence of stationary solutions, it is by no means a

Q(X, h, t) =0 (27)su� cient condition. A complete numerical analysis of
the problem in time, based on the solution of the time Q(x, h, 0 ) =0 (28)
equation in w( t ) shows that in all cases for V > V2 the
possible stationary solution is unstable, i.e. it does not and the conditions of Q being periodic in h and ® nite in

x =0 are maintained. By neglecting the terms in V andconstitute a true limit for in® nite time, whereas for
V < V1#Vc , the stationary solution is stable. Vc , one is left essentially with a Laplace equation in the

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
9
:
4
1
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



5492-D hydrodynamica l description of nematics

plane is iterated till convergence is reached. In other words, the
functions Amn are obtained from the recursive expressions:qQ0

qt
=VK A q2

Q0

qx
2 +

1

x

qQ0

qx
+

1

x
2

q2
Q0

qh
2 B . (29)

A
(k+1)

mn ( t) = Õ Vc exp[ ( imV+ VK a
2
mn)t]

Generic ® nite solutions are then completely de® ned in
Ö P

t

0
dt exp[ Õ ( imV +VK a

2
mn)t]B

(k)
mn(t)

the form [12]:

Q0 (x, h, t) =�
m
�

n
amn( t) |mn 8 (30) (38)

B
(k)
mn= 7 mn|sin 2 (h+ Q

(k)
) 8 (39)where the basis functions in h and x are

and Q
(k) is obtained from A

(k)
mn through equation (35).

|mn 8 =
1

p
1/2

XJm+1 (amnX )
exp ( imh)Jm (amnx ) . (31) A reasonable starting choice is simply A

(1)
mn=0. Notice

that in practice one considers only values of m >0 and
Index m assumes all integer values, index n assumes all n >1, due to the symmetries imposed by the fact that
integer values minus 0; functions |mn 8 are orthonormal the solution is real. This procedure turns out to be very
with respect to integration in h and x , e� ective: transient behaviour and stationary solutions

are well reproduced by a small number of complex7 mn|mn ¾ 8 =dm,m ¾ dn,n¾ (32)
exponential and Bessel functions, around 5± 7, depending

and they are eigenfunctions of the Laplacian operator, on the relative magnitude of the parameters. Convergence
with eigenvalues a

2
mn . Boundary conditions are taken in the iteration procedure is usually reached after no

into account by the condition imposed on the Bessel more than 10 steps.
functions [13]

Jm (amnX ) =0 (33) 5. Preliminary numerical results

The non linear nature of equation (35) and its depend-which de® nes real coe� cients amn , while coe� cients amn
ence on three independent parameters makes the com-are de® ned from the initial conditions and have a simple
plete analysis of the system rather complex. Also, itexponential dependence on time:
would be interesting to explore e� ects due to changes

amn( t) =amn( 0 ) exp (Õ VKa
2
mnt) . (34) in the boundary and initial conditions, and possibly to

introduce three-dimensional features, e.g. the distributionInitial conditions are used to specify all amn(0 ). One can
of the director orientation in the z direction of thenow use an expression similar to equation (30) to write
sample. Our aim in this work is to present the readerthe general solution of equation (26):
with a few examples for a r̀ealistic’ choice of parameters.

Q (x, h, t) =�
m
�

n
Amn( t) |mn 8 (35)

It is interesting to consider which values are to be
expected for Vc , and VK . For a relatively low intensitybut with corrected time dependent coe� cients Amn(t ).
® eld, 14 000 G, and assuming xa=10 Õ

7 for a shortThe time dependence is de® ned according to the non
molecule nematic, and c1=100 P we get a value forlinear system of the di� erential equation in t only:
Leslie’s critical velocity of Vc=9 8́ Ö 10 Õ

2 s Õ
1. If we

AÇ mn+ ( imV + VK a
2
mn)Amn+ VcBmn=0 (36) take K =5 Ö 10 Õ

6 dyne and we choose d = (K/xa )1/2
/

H =5 5́ Ö 10 Õ
4 cm (magnetic coherence length) we getwhere Bmn( t ) is de® ned as the average:

VK=1 7́ Ö 10 Õ
1 s Õ

1. Let us assume a radius R =0 1́ mm,
Bmn= 7 mn|sin 2 (h+ Q) 8 (37) corresponding to a rescaled radius X =18 2́. We have

now de® ned all the parameters which describe theand they depend on all Amn . Initial conditions can be
rotating sample, except the spinning rate V . Let us con-assumed to be Amn(0 )=0 for all m , n. Equation (36)
sider ® ve possible cases: V =0 s Õ

1, V =4 9́ Ö 10 Õ
2 s Õ

1,is obtained by substituting (35) in the time evolution
V=9 8́Ö 10Õ

2 sÕ
1, V=19 6́Ö 10Õ

2 sÕ
1, V=9 8́Ö 10Õ

1 sÕ
1,expression for Q, equation (26). The expression obtained

i.e. 0, Vc /2 , Vc , 2Vc and 10Vc .is then premultiplied for a generic 7 m , n| function and
The distribution of the director orientation is shownintegrated with respect to h and x ; taking into account

for each case in ® gures 2 ± 6. Four snapshots have beenthe orthonormality condition (32), and the fact that
collected, at increasing times di� erent for each case,functions |m , n 8 are eigenfunctions of the Laplacian
labelled respectively (a), (b), (c) and (d ) in a clockwiseoperator, equation (36) is recovered.
direction. Each snapshot shows a colour plot of functionThe system of equation (36) lends itself to a recursive
|sin w|: a yellow hue characterizes areas where |sin w| issolution, since it is solved analytically for the Amn once
close to 1, i.e. the director is aligned with the y-axisthe Bmn are known; ® rst some simple dependence for the

Amn is assumed, the Bmn are calculated and the procedure (perpendicular to the magnetic ® eld, cf. ® gure 1); a
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550 A. Polimeno and A. F. Martins

Figure 4. Colour plots of the director orientation in the sampleFigure 2. Colour plots of the director orientation in the sample
for V =0, Vc=9 8́ Ö 10 Õ

2 s Õ
1 and VK =1 7́ Ö 10 Õ

1 s Õ
1, for V= Vc , and Vc , VK as in ® gure 2: (a) t=20 s,

(b) t=100 s, (c) t =200 s, (d ) t=400 s.obtained from the numerical solution of equation (35):
(a) t=1 s, (b) t =5 s, (c) t=10 s, (d ) t =25 s.

Figure 5. Colour plots of the director orientation in the sampleFigure 3. Colour plots of the director orientation in the sample
for V= 2Vc , and Vc , VK as in ® gure 2: (a) t=40 s,for V =Vc /2, and Vc , VK as in ® gure 2: (a) t=20 s,
(b) t=200 s, (c) t =300 s, (d ) t=500 s.(b) t =100 s, (c) t =200 s, (d ) t =400 s.

violet hue characterizes areas where |sin w| is close to 0, spinning velocity and Leslie’s critical velocity; (ii ) a
complex pattern of director orientations occurs for lowi.e. the director is aligned with the x-axis (parallel to

the magnetic ® eld ). In all cases, the last snapshot is and intermediate spinning velocities, roughly between
half and twice Leslie’s critical velocity Vc , with areas ofpractically the stationary solution. A few conclusions

can be immediately derived: (i ) a stationary solution is parallel and perpendicular alignment to the magnetic
® eld which alternate along both the angular and thealways attained, independent of the ratio between the
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5512-D hydrodynamica l description of nematics

reported here show that complex patterns arise, depending
on the chosen values of the spinning velocity, intensity
of magnetic ® eld and elastic constant, and that transient
behaviours always give rise to a stationary solution.

A comment is certainly due concerning the physical
reliability of some of our assumptions and choices.
Basically, in this preliminary work our main concern
was to start by considering the spatial dependence of
director orientation in a spinning nematic sample, in an
attempt to go beyond the standard treatment, and to
present the reader with a clear methodology to do
this. To this purpose, a drastic simpli® cation has been
intentionally sought by limiting our treatment to planar
geometries, neglecting time dependent velocity pro® les
and using very simple boundary and initial conditions
(radial alignment at the walls at all times, and throughout
the whole sample at t =0). With these choices, the
resulting ® nal equations are simple enough to be solved
quickly by a straightforward computational procedure.
The price to be paid is of course a certain departure
from the description of a realistic physical system. ForFigure 6. Colour plots of the director orientation in the sample

for V =10Vc , and Vc , VK as in ® gure 2: (a) t=40 s, instance, initial conditions in a real sample, at least in
(b) t =200 s, (c) t =300 s, (d ) t =500 s. the presence of a magnetic ® eld, should be taken rather

as an alignment of the director with the ® eld in the bulk
of the sample. This would require more complicated,radial coordinate; (iii ) the stationary solution is closer

to h for increasing V , in accordance with the obvious although still straightforward to calculate, initial con-
ditions for the coe� cients Amn. Only for the sake ofobservation that for high rotation speed both elastic and

magnetic contributions become perturbational terms clarity has the simplest assumption of perfect radial
alignment been made.and the dominant stationary solution is given by the

spinning term only; ( iv) transient phenomena can be A number of extensions of the treatment presented in
this work are possible, corresponding to lifting some orrelatively long lived and they can persist for times

comparable to the inverse of Leslie’s critical velocity. all of the approximations used to recover equation (35),
and making the description closer to the full equations
of nematodynamics. Conditions (3 ) and (4 ), related to6. Concluding remarks

The objective of this work has been to show that the inertial terms and elastic constants, can be eliminated
easily, at the limited cost of a more complicatedconstitutive equations of a nematic liquid crystal sample,

subjected to a constant spinning motion and a magnetic algebraic description. More signi® cant are conditions (1 )
and (2 ). Extension of our treatment to three dimensions,® eld, can be numerically solved when the full spatial

dependence is taken into account. A reasonably complex inclusion of back¯ ow e� ects in terms of time dependent
velocity pro® les, and choice of realistic initial conditionspartial di� erential equation for the director orientation

is recovered by imposing four conditions. are probably the most relevant ingredients in describing
actual experimental situations, since it should be possible

(1) Con® nement of the spatial dependence to a plane.
to consider explicitly the formation of convection ¯ uxes

(2) Choice of the simplest possible velocity pro® le.
along the third dimension and to accommodate more

(3) Neglect of inertial terms.
realistic boundary conditions (e.g. with a parallel align-

(4) Assumption of the spherical approximation.
ment to the cylinder internal walls) and initial conditions
(e.g. with an initial alignment of the sample almostThe complete time evolution equation is easily written

in spatial polar coordinates h, x and boundary and parallel to the magnetic ® eld ). Work is currently near
completion which attempts to answer at least partiallyinitial conditions can be written clearly for simple cases.

The numerical treatment of the resulting problem can some of these issues [14]. We expect that the existence
of long lived transient patterns and of a stationarybe based on a combination of a Fourier expansion in h

and in an expansion in terms of Bessel functions in x , solution should be con® rmed by a 3-D analysis, although
the detailed description of patterns in the distributioncombined with a recursive procedure for determining

the exact time dependence. Preliminary calculations of the director orientation should be di� erent.
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